Program
(30 August 2018)

Tuesday 11 morning

Conference Opening Session

R. Cristiano WOLTE13 Chairman
C. Ferdeghini Director of CNR – SPIN Institute
R.C. Spinella Director of CNR Dept. of Physical Sciences and Technologies of Matter

Session TUE 1 Semiconductor & Superconductor Devices at Low Temperature

ID72 KEY E. Charbon, EPFL Lausanne, Switzerland and Kavli Institute of Nanoscience, Delft, the Netherlands
Cryo-CMOS Systems for the Control of Quantum Computers

ID43 INV Y. Jin C2N, CNRS, Univ. Paris-sud, Univ. Paris-Saclay, Marcoussis, France
Ultra-low noise and low temperature readout electronics based on cryoHEMTs made at the C2N: performance and applications

ID52 INV K. Sano Nagoya University, Furocho, Chikusaku, Nagoya, Japan
Superconducting nano-structured line drivers in Josephson-CMOS hybrid memory

ID30 A. Engel Hightec MC AG, Lenzburg, Switzerland
Superconducting and flexible multilayer high-density interconnect for low temperature electronics

ID36 A. Corna Qutech and Kavli Institute of Nanoscience, Delft Univ of Technology, Delft, the Netherlands
Cryogenic DRAM-based voltage controller for spin-based quantum computation

Session TUE 2 Q-bits with Low Temperature Devices

ID71 INV E. Il'ichev Leibniz Institute of Photonic Technology, Jena, Germany
Quantum metamaterials composed of superconducting qubits

ID50 C. Degenhardt Central Inst. of Engineering, Electronics and Analytics, Forschungszentrum Jülich GmbH, Germany
SQuBiC1: An integrated control chip for semiconductor qubits

ID37 T. Kelly Rambus Labs USA
Some Like It Cold: Initial Testing Results for Cryogenic Computing Components

ID12 H. Homulle QuTech, Delft University of Technology, Delft, The Netherlands
QuRO: The first entirely cryogenic interface between silicon spin qubits and a programmable classical system
Tuesday 11 afternoon

POSTER SESSION: List of posters at the end of this document

Session TUE 3 Low Temperature Detectors & Readout

ID11 A. Giachero University and INFN of Milano-Bicocca, Dept. of Physics, Milan, Italy
Cryogenics microwave rf-SQUID multiplexing read-out for the calorimetric measurement of the neutrino mass

ID40 A. Paiella Dipartimento di Fisica, Sapienza Università di Roma and INFN Sez. Roma, Italy
Kinetic Inductance Detectors and readout electronics for the OLI MPO experiment

ID14 Li He Dept of Engineering Physics, Tsinghua University, Beijing, China
Comparison of JFET/MOS/HEMT Based Low Noise Charge Sensitive Preamplifiers for HPGe Detectors in Cryogenic Temperature

ID55 A. Poon Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
Development of ultra-low-radioactivity front-end electronics for neutrinoless double-beta decay searches with 76Ge detectors

ID8 I. Colantoni Dublin Inst for Adv. Studies, School of Cosmic Physics/Astronomy and Astrophysics Section, Dublin, Ireland
MKIDS the next generation kilo-pixel camera

ID18 S. Di Domizio Dipartimento di Fisica – Università degli Studi di Genova and INFN, Genova, Italy
CALDER: KID-based cryogenic light detectors for rare event searches
Wednesday 12 morning

Session WED 1 Low Temperature Detectors & Devices

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Affiliation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID61</td>
<td>Go Fuji</td>
<td>Nanoelectronics Research Inst., AIST, Tsukuba, Japan</td>
<td>Development of 4096-pixel superconducting-tunnel-junction array X-ray detectors for analytical sciences</td>
</tr>
<tr>
<td>ID28</td>
<td>Y. Takeuchi</td>
<td>University of Tsukuba, Japan</td>
<td>Development of FD-SOI cryogenic amplifier for application to STJ readout in COBAND experiment</td>
</tr>
<tr>
<td>ID51</td>
<td>S. Shitov</td>
<td>National University of Science and Technology MISiS, Moscow, Russia</td>
<td>Bias Analysis of Microwave-Readable RFTES Bolometer</td>
</tr>
<tr>
<td>ID24</td>
<td>C. Pobes Aranda</td>
<td>ICMA Institute of Material Science of Aragon (CSIC-Universidad de Zaragoza), Zaragoza, Spain</td>
<td>Comparison of Ti/Au and Mo/Au TESs characterized under DC</td>
</tr>
<tr>
<td>ID13</td>
<td>F. Liu</td>
<td>Key Laboratory of Patiice & Radiation Imaging, Ministry of Education, Beijing, China</td>
<td>Evaluation of a 100MS/s 10b ADC at Cryogenic Temperature for Low-background Physics Experiments</td>
</tr>
<tr>
<td>ID32</td>
<td>S. Cibella</td>
<td>Istituto di Fotonica e Nanotecnologie CNR, Roma, Italy</td>
<td>Bolometric detection with an NbN hot electron bolometer coupled to a split ring resonator (SRR)</td>
</tr>
<tr>
<td>ID65</td>
<td>L. Parlato</td>
<td>Physics Dept, Univ Federico II, Napoli, Italy</td>
<td>Material aspects for Superconducting Nanowire Single-Photon Detectors</td>
</tr>
</tbody>
</table>

Session WED 2 Low Temperature Devices for Classical and Quantum Information

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Affiliation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID68</td>
<td>E. DeBenedictis</td>
<td>IEEE Council on Supercond.; IEEE Rebooting Computing; Sandia Nat. Labs, Albuquerque, New Mexico, USA</td>
<td>IEEE Superconducting and Quantum Information Activities</td>
</tr>
<tr>
<td>ID41</td>
<td>T. Yamashita</td>
<td>Graduate School of Engineering, Nagoya University, Furocho, Chikusaku, Nagoya, Japan</td>
<td>Development of pi-shift superconducting flux qubits</td>
</tr>
<tr>
<td>ID53</td>
<td>K. Delfanazari</td>
<td>Engineering Department, University of Cambridge, UK</td>
<td>Spin dependent conductance enhancement and Andreev magnetotransport in 2D Josephson junctions</td>
</tr>
<tr>
<td>ID26</td>
<td>M. Cirillo</td>
<td>Dipartimento di Fisica and MINAS-Lab, Università di Roma “Tor Vergata”, Roma, Italy</td>
<td>Potential Escape Dynamics for Very Underdamped Josephson Junctions</td>
</tr>
<tr>
<td>ID31</td>
<td>D. Crété</td>
<td>Unité Mixte de Physique, CNRS/THALES, Univ. Paris-Sud, Univ. Paris-Saclay, Palaiseau CEDEX, France</td>
<td>Integration density of ion-damaged barrier Josephson junction and circuits</td>
</tr>
</tbody>
</table>
Wednesday 12 afternoon

Session WED 3 Special on Cryogenic Memories

ID62 INV D. Mihailovic Jozef Stefan Institute, Dept. of Complex Matter, Ljubljana, Slovenia
Ultrafast switching and the role of non-trivial defects in 1T-TaS2 CDW memory devices

ID49 INV E. Strambini NEST Istituto Nanosciente-CNR and Scuola Normale Superiore, Pisa, Italy
A Superconducting absolute spin valve, towards a new generation of magnetic RAM

ID63 INV R. Caruso CeSMA – Università degli Studi di Napoli Federico II, Napoli, Italy
Properties of low-dissipation ferromagnetic junctions for memory applications

ID59 INV S. Pagano Dipartimento di Fisica "E.R. Caianiello", Università di Salerno, Fisciano (SA), Italy
Magnetic Superconductive Nanowire Memories

ID67 INV F. Miletto CNR-SPIN Napoli, Italy
Emergent oxide memory devices

Session WED 4 2018 Nicholas Kurti Science Award Ceremony

M Cuthbert, Oxford Instruments NanoScience
Introduction

P. Moll
Max Plank Institute for Chemical Physics of Solids, Dresden, Germany
2018 Winner
Development of novel micro-structuring techniques for quantum materials

Session WED 5 EXHIBITORS presentations

Departure to the Social Dinner

Social Dinner in Nerano
Thursday 13 morning

Session THU1 Advanced Devices and Cryotechnologies for Quantum Information & Communication 1

ID73
M. Ter Brake
University of Twente, Faculty Science and Technology, Enschede, The Netherlands
(Micro?)Cooling of Low Temperature Electronics

ID38
L. You
State Key Lab of Functional Materials for Informatics, SIMIT CAS, Shanghai, China
Superconducting nanowire single photon detectors for quantum information

IDX1
F. Cataliotti
European Lab Nonlinear Spect LENS and Univ Florence, Florence, Italy
Quantum Flagship: the Italian perspective

IDX2
A. Zavatta
CNR-INO, Florence, Italy
NATO Project on Secure Quantum Communications through submarine optical fibre link between Italy and Malta

ID75
M. Grassi
Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
CubeSat-based space platforms: emerging solutions for innovative space missions

IDX5
N. Salza
Consorzio ALI, Napoli, Italy
Exhibition IRENE device for Small Mars Satellite Mission

Session THU2 Advanced Devices and Cryotechnologies for Quantum Information & Communication 2

ID22
A. Jones
Department of Physics, Lancaster University, Lancaster, UK
On-chip Magnetic Cooling of Electrons in Nanoelectronic Devices

IDX4
N. Fabbri
CNR-INO, Florence, Italy
Spin qubit control, towards integrated quantum devices

ID76
O. Mukhanov
HYPRES, Inc., Elmsford, NY, USA
SFQ-assisted Detectors - Integration of Josephson Junctions with Single Photon Detectors.

ID34
A. Gaggero
Istituto di Fotonica e Nanotecnologie – CNR, Roma, Italy
Pulse position resolving SNSPD array integrated in photonic circuit

ID19
S. Cherednichenko
Chalmers University of Technology, Gothenburg, Sweden
Low kinetic inductance nanowire single photon detectors made of thin MgB2 films

ID25
P. Amari
Lab. de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research Univ, CNRS, Paris, France
High Temperature Superconducting nano-meanders made by ion irradiation

Thursday 13 afternoon

Session THU 3 Low Temperature Devices and New Physics

- **ID57 INV** F. Giazotto NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
 All-metallic supercurrent and Josephson field-effect transistors

- **ID10 INV** D. Perez de Lara IMDEA-Nanociencia, Madrid, Spain
 Tunable optoelectronic properties of transition metal dichalcogenides devices by biaxial strain engineering

- **ID17** M. Thompson Dept. of Physics, Lancaster University, Lancaster, United Kingdom
 Tunable SQUIDs using graphene Josephson junctions

- **ID21** N. Kolotinskii Lomonosov Moscow State University, Moscow, Russia
 Bi-SQUID designing tradeoff

- **ID69** P. Solinas CNR-SPIN, Genova, Italy
 Proximity SQUID single photon detector via temperature-to-voltage conversion

- **ID20** F. Ronetti Univ. di Genova and CNR-SPIN, Genova, Italy
 Crystallization of Levitons in the fractional quantum Hall regime

- **ID33** M. Acciai Dipartimento di Fisica, Università di Genova, Genova, Italy
 Probing interactions via non-equilibrium momentum distribution and noise in integer quantum Hall systems

Conference Closing Session

- E. Silva IEEE Council of Superconductivity, Italy
- G. Pepe Conference Co-Chair

END
Tuesday 11 afternoon

POSTER SESSION

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID9</td>
<td>Low temperature passive electronics for optimizing the performance of superconducting nanowire single-photon detector</td>
<td>Chaolin Lv State Key Lab of Functional Materials for Informatics, SIMIT, CAS, Shanghai, China</td>
</tr>
<tr>
<td>ID39</td>
<td>Noise studying of Microwave Kinetic Inductance Detectors</td>
<td>Z. Kazykenov Energetic Cosmos Laboratory, Nazarbayev University, Astana, Kazakhstan</td>
</tr>
<tr>
<td>ID42</td>
<td>Data Acquisition System for Microwave Kinetic Inductance Detectors</td>
<td>M. Bekbalanova Energetic Cosmos Laboratory, Nazarbayev University, Astana, Kazakhstan</td>
</tr>
<tr>
<td>ID54</td>
<td>Cavity mode analysis in tunable and coherent superconducting terahertz emitters</td>
<td>K. Delfanazari Engineering Department, University of Cambridge, UK</td>
</tr>
<tr>
<td>ID44</td>
<td>Design of microwave Kinetic inductance detectors for mm/submm and optical Astronomy</td>
<td>M. Shafiee Energetic Cosmos Laboratory, Nazarbayev University, Astana, Kazakhstan</td>
</tr>
<tr>
<td>ID23</td>
<td>Design of microwave Kinetic inductance detectors for mm/submm and optical Astronomy</td>
<td>N. Kolotinskiy Lomonosov Moscow State University, Department of Physics, Moscow, Russia</td>
</tr>
<tr>
<td>ID60</td>
<td>An experimental study on the noise performance in SQUID magnetometers</td>
<td>A. Vettoliere CNR-ISASI, Pozzuoli, Italy</td>
</tr>
<tr>
<td>ID29</td>
<td>Confocal Annular Josephson Tunnel Junctions as Candidates for Josephson Vortex Qubits</td>
<td>M. Lisitsky CNR-SPIN Pozzuoli, Italy</td>
</tr>
<tr>
<td>ID45</td>
<td>Combined Magnetic Field Sensor with Nanostructured Elements</td>
<td>L. Ichkitidze Nat. Res. Univ. of Electronic Technology, Zelenograd, Moscow, Russian Federation</td>
</tr>
<tr>
<td>ID47</td>
<td>Superconducting Films Magnetic Field Concentrator with Nanosized Cuts</td>
<td>L. Ichkitidze Nat. Res. Univ. of Electronic Technology, Zelenograd, Moscow, Russian Federation</td>
</tr>
<tr>
<td>ID48</td>
<td>Possible Registration of Magnetic Particles in Biological objects</td>
<td>L. Ichkitidze Nat. Res. Univ. of Electronic Technology, Zelenograd, Moscow, Russian Federation</td>
</tr>
<tr>
<td>ID56</td>
<td>Critical Current in the Film from the Josephson Medium</td>
<td>L. Ichkitidze Nat. Res. Univ. of Electronic Technology, Zelenograd, Moscow, Russian Federation</td>
</tr>
<tr>
<td>ID27</td>
<td>Cryogenic Mismatch Characterization of Nanometer CMOS</td>
<td>P. ’t Hart Technical Univ. Delft, Delft, The Netherlands</td>
</tr>
<tr>
<td>ID58</td>
<td>A fast-cycling Ka-band noise measurement system</td>
<td>S. J. Melhuish Jodrell Bank Centre for Astrophysics, Univ. of Manchester, UK</td>
</tr>
<tr>
<td>ID70</td>
<td>Anisotropic thermally activated dissipation in (Li$_{1-x}$Fe$_x$)OHFeSe superconducting single crystal</td>
<td>G. Y. Zhang Max Planck Institute for Solid State Research, Stuttgart, Germany</td>
</tr>
</tbody>
</table>